

中华人民共和国国家环境保护标准

HJ 595-2010

水质 彩色显影剂总量的测定 169 成色剂分光光度法 (暂行)

Water quality—Determination of the total amount of the color developing agent—169 Coupler spectrophotometry

2010-10-21 发布

2011-01-01 实施

中华人民共和国国家环境保护标准 水质 彩色显影剂总量的测定 169 成色剂分光光度法(暂行) HJ 595—2010

*

中国环境科学出版社出版发行
(100062 北京东城区广渠门内大街 16 号)
网址: http://www.cesp.com.cn
电话: 010-67112738
北京市联华印刷厂印刷
版权所有 违者必究

*

2010年12月第 1 版 开本 880×1230 1/16 2010年12月第1次印刷 印张 1 字数 40千字 统一书号: 135111•114 定价: 15.00元

中华人民共和国环境保护部 公 告

2010年 第77号

为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《环境空气 臭氧的测定 紫外光度法》等六项标准为国家环境保护标准,并予发布。

标准名称、编号如下:

- 一、环境空气 臭氧的测定 紫外光度法 (HJ 590—2010);
- 二、水质 五氯酚的测定 气相色谱法(HJ 591—2010);
- 三、水质 硝基苯类化合物的测定 气相色谱法 (HJ 592-2010);
- 四、水质 单质磷的测定 磷钼蓝分光光度法(暂行)(HJ 593-2010);
- 五、水质 显影剂及其氧化物总量的测定 碘-淀粉分光光度法(暂行)(HJ 594—2010);
- 六、水质 彩色显影剂总量的测定 169 成色剂分光光度法(暂行)(HJ 595—2010)。
- 以上标准自 2011 年 1 月 1 日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。

自以上标准实施之日起,由原国家环境保护局批准、发布的下述三项国家环境保护标准废止,标准 名称、编号如下:

- 一、环境空气 臭氧的测定 紫外分光光度法 (GB/T 15438—1995);
- 二、水质 五氯酚的测定 气相色谱法 (GB 8972—88);
- 三、工业废水 总硝基化合物的测定 气相色谱法 (GB 4919—85)。 特此公告。

2010年10月21日

目 次

前	主 日	. iv
1	适用范围	1
2	规范性引用文件	1
	术语和定义	
	方法原理	
	试剂和材料	
	仪器和设备	
	样品	
	分析步骤	
	结果计算	
	注意事项	
	录 A(资料性附录) 常用的彩色显影剂的种类和化学结构式	

前言

为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范废水中彩色显影剂总量的监测方法,制定本标准。

本标准规定了测定废水中彩色显影剂总量的 169 成色剂分光光度法。

本标准的附录 A 为资料性附录。

本标准由环境保护部科技标准司组织制订。

本标准起草单位: 北京市环境保护监测中心。

本标准环境保护部 2010年 10月 21日批准。

本标准自2011年1月1日起实施。

本标准由环境保护部解释。

水质 彩色显影剂总量的测定 169 成色剂分光光度法

1 适用范围

本标准规定了测定水中彩色显影剂总量的 169 成色剂分光光度法。

本标准适用于洗印废水中彩色显影剂总量的测定。

当使用 20 mm 比色皿,取样体积为 20.0 ml 时,方法检出限为 1.03×10^{-6} mol/L,相当于对氨基二乙苯胺盐酸盐(TSS)0.27 mg/L;测定下限为 4.12×10^{-6} mol/L,相当于对氨基二乙苯胺盐酸盐(TSS)1.08 mg/L;测定上限为 8.55×10^{-5} mol/L,相当于对氨基二乙苯胺盐酸盐(TSS)25.0 mg/L。

2 规范性引用文件

本标准内容引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB/T 6682 分析实验室用水规格和试验方法

3 术语和定义

下列术语和定义适用于本标准。

彩色显影剂: 使感光材料经曝光后产生的潜影显现成可见影像, 并与乳剂层的成色剂作用生成有机染料的药剂。常用的彩色显影剂包括对氨基二乙苯胺盐酸盐 (TSS), 2-氨基-5-二乙基氨基甲苯盐酸盐 (CD-2)、4-氨基-N-乙基-N-(β-甲磺酰胺乙基) 间甲苯胺硫酸盐 (CD-3)、4-氨基-N-乙基-N (β-羟乙基) 间甲苯胺硫酸盐 (CD-4)等,结构式见附录 A。

4 方法原理

洗印废水中的彩色显影剂可被氧化剂氧化,其氧化物在碱性溶液中遇到水溶性成色剂时,立即偶合形成染料。不同结构的显影剂(TSS, CD-2, CD-3, CD-4)与 169 成色剂偶合成染料时,其最大吸收的光谱波长均在 550 nm 处,其吸光度与彩色显影剂含量符合朗伯-比耳定律。

本方法不包括黑白显影剂。

以 TSS 为例, 化学反应式如下:

HJ 595-2010

5 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂。实验用水符合 GB/T 6682,三级。

- 5.1 氢氧化钠 (NaOH): 优级纯。
- 5.2 硫酸铜 (CuSO₄·5H₂O): 分析纯。
- 5.3 无水碳酸钠 (Na₂CO₃): 分析纯。
- 5.4 亚硝酸钠 (NaNO₂): 分析纯。
- 5.5 氯化铵 (NH₄Cl): 分析纯。
- 5.6 亚硫酸钠 (Na₂SO₃): 分析纯。
- 5.7 169 成色剂。
- 5.8 169 成色剂溶液: w= 0.5%。

称取 0.5 g 169 成色剂(5.7)置于有 100 ml 蒸馏水的烧杯中,在搅拌下,加入 $1\sim2$ 粒氢氧化钠 (5.1),使其完全溶解,摇匀,转移至棕色试剂瓶中。

5.9 混合氧化剂溶液。

将 0.5 g 硫酸铜(5.2),5.0 g 无水碳酸钠(5.3),5.0 g 亚硝酸钠(5.4)以及 5.0 g 氯化铵(5.5)依 次溶解于水,稀释至 100 ml,摇匀,贮存于棕色试剂瓶中。

5.10 彩色显影剂 TSS 标准溶液: ρ =0.10 mg/ml。

精确称取 0.100 g 照相级的彩色显影剂 TSS,溶解于少量蒸馏水中,预先溶入 0.1 g Na_2SO_3 (5.6) 作保护剂,移入 $1\,000$ ml 容量瓶中,用水稀释至标线,摇匀,贮于聚乙烯瓶中。此标准溶液每毫升含 0.10 mg 彩色显影剂 TSS,临用现配。

注:显影剂标准溶液建议选用 TSS, TSS 在生产中使用最多,相对分子质量(262.33) 居中,且较稳定。

6 仪器和设备

- 6.1 可见分光光度计:配有光程为 10 mm 的比色皿。
- 6.2 具塞比色管: 50 ml。

7 样品

7.1 样品的采集

彩色显影剂不稳定,易被氧化成醌类化合物。采样充满棕色玻璃瓶,样品应避免光、热和剧烈振动。

7.2 样品的保存

样品采集后应尽快分析,若不能当天测定,应按 $1\,000\,\mathrm{ml}$ 样品中加入 $0.1\,\mathrm{g}$ 亚硫酸钠的比例加入亚硫酸钠作保护剂,于 $0{\sim}4\,\mathrm{C}$ 冷藏保存,保存期不超过 $48\,\mathrm{h}$ 。

8 分析步骤

8.1 校准曲线的绘制

取6支50ml具塞比色管,按表1配制校准系列。

管号	0	1	2	3	4	5
彩色显影剂 TSS 标准溶液/ml	0.00	1.00	2.00	3.00	4.00	5.00
彩色显影剂 TSS 含量/μg	0.00	100	200	300	400	500

表 1 彩色显影剂校准系列

分别向每支比色管中加入 $1.0 \, \text{ml}$ $169 \, \text{成色剂溶液}$ (5.8),用水稀释至标线,摇匀,再分别加入 $1.0 \, \text{ml}$ 混合氧化剂溶液 (5.9),摇匀。在 $5 \, \text{min}$ 内,于波长 $550 \, \text{nm}$ 处,用光程为 $10 \, \text{mm}$ 的比色皿,以水为参比,测量吸光度。以吸光度对彩色显影剂含量(μg)绘制校准曲线。校准曲线截距为 a,斜率为 b,校准方程为 y=a+bx。

注: 生成的品红染料在 8 min 之内吸光度是稳定的,故宜在染料生成后 5 min 之内测定。

8.2 样品测定

8.2.1 样品测定

取适量水样(小于 20 ml)置于 50 ml 的比色管中,加 1.0 ml 169 成色剂溶液(5.8),加水稀释至标线,以下步骤同校准曲线的制作,以水为参比,测定吸光度 A。

8.2.2 样品空白的测定

取水样体积同 8.2.1,置于 50 ml 的比色管中,直接加水稀释至标线,摇匀,再加入 1.0 ml 混合氧化剂溶液 (5.9),摇匀。在 5 min 内,于波长 550 nm 处,用光程为 10 mm 的比色皿,以水为参比,测量吸光度 A_0 。

9 结果计算

水样中彩色显影剂总量 ρ 按照式(1)计算。

$$\rho = \frac{(A - A_0) - a}{b \times V} \tag{1}$$

HJ 595—2010

式中: ρ ——水样中彩色显影剂总量, mg/L;

A——水样的吸光度值;

 A_0 —样品空白的吸光度值;

V——水样体积, ml;

a——标准曲线截距;

b——标准曲线斜率。

10 注意事项

- 10.1 由于六价铬干扰测定,故应避免用硫酸-铬酸洗液洗涤采样容器和玻璃器皿。
- **10.2** 用过的比色皿及比色管应及时用酸洗涤,否则蓝色难以洗净。具塞比色管用(1+1)盐酸溶液洗涤,比色皿用(1+4)盐酸溶液加 1/3 体积乙醇的混合液洗涤。

附 录 A (资料性附录) 常用的彩色显影剂的种类和化学结构式

常用的彩色显影剂的种类和化学结构式见表 A.1。

表 A.1 常用的彩色显影剂的种类和化学结构式一览表

表示。前所的第三重要用的有关语言的指导之一类或								
名称	别名	分子式	相对分子质量	化学结构式				
对氨基二乙苯胺盐酸盐	TSS	$C_{10}H_{16}N_2 \cdot HCl$	262.33	H_2N N N N				
2-氨基-5-二乙基氨基 甲苯盐酸盐	CD-2	$C_{11}H_{18}N_2 \cdot HCl$	214.74	NH ₂ HCl				
4-氨基-N-乙基-N-(β-甲 磺酰胺乙基)间甲苯胺硫 酸盐	CD-3	$2(C_{12}H_{21}N_3O_2S) \cdot 3(H_2SO_4) \cdot 2(H_2O)$	873.01	O H HO-S-OH O H O H2O				
4-氨基- <i>N</i> -乙基- <i>N</i> (β-羟乙基)间甲苯胺硫酸盐	CD-4	C ₁₁ H ₁₈ N ₂ O • H ₂ SO ₄	292.35	NH OH OS OS OS OS				

5